Unit One Parabolas
Standard Form

$$
y+4=-3(x+1)^{2}
$$

find:

$$
\text { vertex }(-1,-4)
$$

$$
\text { domain }(-00,00
$$

range $(-\infty,-4]$
axis of sym $\quad x=-1$
Max y or min
yintercert -7
opens down
$\begin{array}{ll}\text { slope } \frac{-3}{1} & y+4=-3 \\ \text { at in }\end{array}$

General form

$$
y=(3) x^{2}-12 x+7
$$

vertex $\frac{-b}{2 a} \frac{12}{2.3}=(2,-5)$ sketch
opens up slope
range $[-5, \infty)$
$y_{\text {int. }} \rightarrow 7$
$\operatorname{Max}(\operatorname{mnn})=-5$
Gus of sym $x=2$
Topic $3 x$ and y intercept
vertex is middle

$$
\begin{aligned}
& \frac{-2+10}{2}=4 \\
&(4,-36)
\end{aligned}
$$

Topic 6 - completing the $(4,-36)$
square to change to standard

$$
y^{21}=x^{2}-10 x+21
$$

move number
factor a if $y-21=x^{2}-10 x$
necessary
complete squire

$$
\begin{aligned}
& y-21^{25}=x^{2}-10 x+25 \\
& y+4=(x-5)^{2}
\end{aligned}
$$

Convert to Standard

$$
y=-3 x^{2}+24 x-60
$$

move number
factor "a"

$$
\begin{aligned}
& y+60=-3 x^{2}+24 x \\
& y+48=-3\left(x^{2}-8 x+16\right) \\
& y+12=-3(x-4)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& y=\frac{k 6-32-20}{x^{2}}-8 x-20 \\
& x^{2}=y \quad 4=4^{2}-8.4-20 \quad 0=x^{2}-8 x-20 \\
& \begin{array}{lll}
& & 0
\end{array} \\
& \text { find the } y \text { intercept }-20 \text { int ace }-2 \text { and } 10
\end{aligned}
$$

Last Topic Yesterday word problems
41) 4000 items sell for 5 dollars If I lower the price by dollar, I sell 2000 more. Find the best price to sell them for so revenue is maximized.

$$
R=\text { Number } \times \text { Price }
$$

Foil

$$
\begin{aligned}
& (4000+200 x)(5-1 x) \\
& 20,000-4000 x+10000 x-2000 x^{2} \\
& R=-2000 x^{2}+6000 x+20,000 \\
& \frac{-b}{2 a} \frac{-6000}{2(-2000)}=1.5 \quad S_{e l l} \quad \$_{3.50}
\end{aligned}
$$

Rectangle Question
2rectangular plots of land along a river. You have 4800 metres of fencing

Maximize the area

$$
\begin{align*}
& \begin{array}{l}
3 \omega+L=480 \quad A \\
L=(480-3 \omega)
\end{array} \\
& A=(480-3 \omega) \\
& A=480 w-3 w^{2} \tag{80}\\
&=-3 w^{2}+480 \quad \frac{-b}{29} \quad \begin{array}{l}
-\frac{480}{2(-3)} \\
\\
\\
\\
\\
\\
\\
L=80
\end{array}
\end{align*}
$$

